CHOQUET INTEGRAL WITH RESPECT TO THE
COMPOSED FUZZY MEASURE OF COMPLETED
L-MEASURE AND DELTA-MEASURE
結合完全 L-測度與 Delta-測度之複合模糊測
度之 CHOQUET 積分
ACKNOWLEDGMENTS

As my second doctoral dissertation, I wish to express my most sincere gratitude to those who share in the accomplishment of this study.

To my research advisors, Prof. Hsiang-Chuan Liu and Prof. Tian-Wei Sheu, who taught me the fuzzy measure, Fuzzy C-Means, rough set, grey theory, Choquet integral, and Neural Test Theory. Their patience, continuous support, and encouragement gradually increased my confidence so that I would really be able to accomplish this study. I would also like to express my appreciation for them sharing their remarkable statistics knowledge and experience in the field of Educational Measurement.

To the members of the doctoral committee, Prof. Bor-Chen Kuo, who is the Chair of Graduate Institute of Educational Measurement and Statistics, Taichung University. He is a specialist in non-parametric statistics, who gave me so many ideas and recommendations for explaining the statistical data in this dissertation. I will never forget his amicable smile of encouragement that always facilitated and continued our communication.

To my faculty representative: Prof. His-Mu Leu, whose support, knowledge, and enthusiasm fostered my ability intrinsic; Prof. Ben-Chang Shia, whose richness of knowledge and experience in supervising dissertations was always generously given.

To my professors at the Graduate Institute of Educational Measurement and Statistics, Taichung University, Dr. Masatake Nagai and Dr. Guey-Shya Chen, who taught me Grey Theory and Matlab program.

To my classmates at the Taichung University, Dr. Jeng-Ming Yih, Dr. Yu-Du Jheng, Dr. Chin-Chun Chen, Mr. Bai-Cheng Jeng, Yen-Kuei Yu, … who helped me as volunteers in designing the Matlab program of this dissertation, even though they were busy in their own academic works.

To my professors at the the University of Northern Colorado, Mr. and Mrs. Jing-Wey Chen as well as Mr. and Mrs. Allen Huang, who took care me and my wife during we studied in USA to earn our first doctoral degree.

To my parents, Mr. Yen-Lu Wu (1933-2009) and Mrs. Raan Lee Wu, my father-
and mother-in-law, Mr. and Mrs. Ding-Chun Ma, and family members who prayed that I could complete my academic work early. I will appreciate them forever; so will my wife and my two lovely daughters – Meng-Ju Wu (Junior in Taipei Medical University) and Ya-Ju Wu (freshman in National Taiwan University).

To my wife (my classmate and roommate also), Prof. Hsiu-lan Ma, who accompanied me over 20 years and was supportive of me throughout my study since 1985.

A proverb says, "Rome was not built in a day." It would have been impossible to do this research if there had not been so many teachers and professors who helped me. Finally, I wish to thank all of my elementary and secondary school teachers, and my professors at the National Taichung Teachers' College (NTCTC), the National Taiwan Normal University (NTNU), and the University of Northern Colorado, especially, to Professor Chang-Diaw Jean (1939-2006) in NTCTC and Professor Mason Chen (1923-2004) in NTNU. The former was one of the best teachers I have ever met and was the first professor to teach me how to learning and teach mathematics. The later was the advisor for my master's thesis. He was one of the best teachers I have ever met and was the first professor to teach me how to do researches.
摘要

如眾所周知，傳統的 λ-測度和 P-測度，均僅具有唯一公式解。為了改善此一缺失與限制，我們先後分別提出具有無窮多解的 L-測度與 δ-測度，但 L-測度並不是可加性測度，而且 δ-測度之多值測度解之範圍比 L-測度之多值測度解之範圍小很多。

由於上述兩種測度各有其優劣，為了結合優點，避除上述缺點，結合 L-測度與半個 δ-測度，我們發表複合模糊測度模式。本研究更上一層樓，提出更為改善的模糊測度，結合 L-測度與全部的 δ-測度，稱之為「結合完全 L-測度與 Delta-測度之複合模糊測度模式」，記做 $L(C\delta)$。

研究結果顯示：結合完全 L-測度與 Delta-測度之複合模糊測度模式，$L(C\delta)$，在基於 γ-密度函數之 Choquet 模糊積分迴歸模式之預測效力優於其他預測模式。

關鍵字：λ-測度，P-測度，L-測度，δ-測度，$L(\delta)$-模糊測度，γ-密度函數，Choquet 模糊積分，$L(C\delta)$ 完全模糊測度
ABSTRACT

In this dissertation, a composed fuzzy measure of completed L-measure and δ-measure, denoted $L_{C\delta}$-measure, is proposed. This new measure is proved that it is of closed form with infinitely many solutions, and can be considered as an extension of the three well known measures, additive measure, λ-measure and P-measure, respectively. Furthermore, it is a completed multivalent fuzzy measure, and not only including the smallest fuzzy measure, P-measure, but also attaining to the largest fuzzy measure, B-measure. It has more infinitely many fuzzy measure solutions than L-measure, δ-measure and the composed fuzzy measure of L-measure, and δ-measure. By using 5-fold cross-validation MSE, a real data experiment is conducted for comparing the performances of a multiple linear regression model, a ridge regression model, and the Choquet integral regression model with respect to P-measure, λ-measure, δ-measure, L-measure, $L(\delta)$-measure, $L(C)$-measure and $L(C\delta)$-measure, respectively.

The result shows that the Choquet integral regression models with respect to the proposed $L(C\delta)$-measure outperforms other forecasting models.

keywords: λ-measure, P-measure, L-measure, δ-measure, $L(\delta)$-measure, γ-Density Function, Choquet integral, $L(C\delta)$-measure
CONTENTS

CHAPTER I THE PROBLEM... 1
1-1 Introduction .. 1
1-2 Objectives of the Study ... 1

CHAPTER II LITERATURE REVIEW ... 3
2-1 Multiple Linear Regression and Ridge Regression 3
2-2 Fuzzy Measures .. 3
2-3 Multivalent Fuzzy Measures .. 5
2-4 δ-measure .. 6
2-5 Composed Measure of L-method and Δ-measure 8
2-6 Choquet Integral Regression Models .. 11
2-7 Fuzzy Density Function .. 12

CHAPTER III RESEARCH PROCEDURE.. 15
3-1 Completed L-measure .. 15
3-2 Composed fuzzy measure of completed L-measure and δ-measure 17

CHAPTER IV THE EXPERIMENT AND RESULTS .. 21
4-1 Data of the Basic Competence Test ... 21
4-2 Experimental Results .. 21

CHAPTER V CONCLUSIONS AND RECOMMENDATIONS 23
5-1 Conclusions ... 23
5-2 Suggestion ... 23

REFERENCES .. 25

Appendix ... 29
Appendix A: Table II.. 29
Appendix B: Published Paper I .. 31
Appendix C: Published Paper II .. 33
Appendix D: Published Paper III ... 35

VITA .. 37
CHAPTER I THE PROBLEM

1-1 Introduction

When there are interactions among independent variables, traditional multiple linear regression models do not perform well enough. The traditional improved methods exploited ridge regression models (Browne, 2000; Hoerl, Kenard, & Baldwin, 1975). Recently, the Choquet integral regression models (Liu, 2009; Liu, Tu, Huang, & Chen, 2008; Liu, Tu, Lin, & Chen, 2008; Liu, Wu, Jheng, & Sheu, 2009; Liu, Chen, Chen, & Jheng, 2007) based on some univalent or multivalent fuzzy measures (Chen, Jheng, Yao, & Liu, 2008; Liu, 2009; Liu, Chen, Jheng, & Chien, 2009; Liu, Chen, Wu, & Sheu, 2009; Liu, Jheng, Lin, & Chen, 2007; Liu, Lin, & Weng, 2007; Liu, Lin, Chang, & Weng, 2007; Liu, Tu, Chen, & Weng, 2008; Liu, Wu, Jheng, & Sheu, 2009; Sugeno, 1974; Wang & Klir, 1992; Wang & Klir, 2009; Zadeh, 1978) were used to improve this situation.

The fuzzy measures, λ-measure (Sugeno, 1974; Wang & Klir, 1992; Wang & Klir, 2009) and P-measure (Zadeh, 1978) have only one formulaic solution of fuzzy measure, the former is not a closed form, and the latter is not sensitive enough. Two multivalent fuzzy measures with infinitely many solutions were proposed by our previous works, called L-measure (Liu, 2009; Liu, Chen, Jheng, & Chien, 2009) and δ-measure (Liu, Wu, Jheng, & Sheu, 2009), but L-measure does not include the additive measure and δ-measure has no multiple measure solutions as L-measure. Due to the above drawbacks, an improved fuzzy measure composed of L-measure and δ-measure, denoted L_δ-measure, was proposed by our other previous work (Liu, Chen, Wu, & Sheu, 2009; Liu, Wu, Chen, Tsai, Jheng, & Sheu, 2009; Liu, Wu, Chen, & Jheng, 2010).

1-2 Objectives of the Study

The main objectives of this study were as follows:

1. A further improved fuzzy measure composed of completed L-measure and
δ-measure, denoted $L_{C\delta}$-measure is proposed. This new fuzzy measure is a completed multivalent fuzzy measure, and has infinitely fuzzy measure solutions than three multivalent fuzzy measures: L_δ-measure, L-measure, and δ-measure, respectively.

2. For evaluating the Choquet integral regression models with our proposed fuzzy measure and other different ones, a real data experiment by using a 5-fold cross-validation mean square error (MSE) is conducted. The performances of Choquet integral regression models based on $L_{C\delta}$-measure, L_δ-measure, L-measure, δ-measure, λ-measure, and P-measure, respectively, a ridge regression model, and a multiple linear regression model are compared.
CHAPTER II LITERATURE REVIEW

2-1 Multiple Linear Regression and Ridge Regression

Let \(Y = X\beta + \varepsilon, \varepsilon \sim N(0, \sigma^2 I_n) \) be a multiple linear model, \(\hat{\beta} = (X'X)^{-1} X'Y \) be the estimated regression coefficient vector, and \(\hat{\beta}_k = (X'X + kI_n)^{-1} X'Y \) be the estimated ridge regression coefficient vector, Hoerl, Kenard and Baldwin (1975) suggested

\[
\hat{k} = \frac{n\sigma^2}{\hat{\beta}'\hat{\beta}}
\]

(2.1)

2-2 Fuzzy Measures

The two well known fuzzy measures, the \(\lambda \)-measure proposed by Sugeno in 1974, and \(P \)-measure proposed by Zadah in 1978, are concisely introduced as follows.

2-2-1 Axioms of Fuzzy Measures

Definition 2.1 fuzzy measure

A fuzzy measure (Sugeno, 1974; Wang & Klir, 1992; Wang & Klir, 2009) \(\mu \) on a finite set \(X \) is a set function \(\mu: 2^X \rightarrow [0,1] \) satisfying the following axioms:

\[
(1) \mu(\emptyset) = 0, \mu(X) = 1 \quad \text{(Boundary conditions)}
\]

(2.2)

\[
(2) A \subseteq B \Rightarrow \mu(A) \leq \mu(B) \quad \text{(monotonicity)}
\]

(2.3)

Usually, Lebesgue measure and probability measure are special case of additive measure. An additive measure must be a monotone measure, but a monotone measure may not be an additive measure. In fact, additive measure are special case of monotone measure. Dempster (1967) pointed out that a monotone measure is called non-additive measure or fuzzy measure. Later, Shafer (1976) improved this viewpoint. Sugeno

Let g be a fuzzy measure on $\left(X, 2^X\right)$ and there are four kinds of additive measure for g.

1. If $\forall A, B \in 2^X$, $A \cap B = \phi$, $\exists g(A \cup B) = g(A) + g(B)$, then g is an additive measure on $\left(X, 2^X\right)$.

2. If $\forall A, B \in 2^X$, $A \neq \phi, B \neq \phi, A \cap B = \phi, A \cup B \neq X \exists g(A \cup B) > g(A) + g(B)$, then g is a super-additive measure on $\left(X, 2^X\right)$.

3. If $\forall A, B \in 2^X$, $A \neq \phi, B \neq \phi, A \cap B = \phi, A \cup B \neq X \exists g(A \cup B) < g(A) + g(B)$, then g is a sub-additive measure on $\left(X, 2^X\right)$.

4. If g does not belong (1), (2), or (3), it is called mixture fuzzy measure.

2-2-2 Fuzzy density function

Definition 2.2 fuzzy density function

A fuzzy density function (Choquet, 1953; Liu, Tu, Chen, & Weng, 2008; Sugeno, 1974; Wang & Klir, 1992; Wang & Klir, 2009; Zadeh, 1978) of a fuzzy measure μ on a finite set X is a function $s : X \rightarrow [0, 1]$ satisfying:

$$s(x) = \mu(\{x\}), x \in X$$

(2.4)

$s(x)$ is called the density of singleton x.

2-2-3 λ-measure

Definition 2.3

For a given singleton measures s, λ-measure (Wang & Klir, 2009) g_{λ}, is a fuzzy measure on a finite set X, satisfying:

$$A, B \in 2^X, A \cap B = \phi, A \cup B \neq X$$
\[\Rightarrow g_\lambda(A \cup B) = g_\lambda(A) + g_\lambda(B) + \lambda g_\lambda(A) g_\lambda(B) \quad (2.5) \]

\[\prod_{i=1}^{n} \left[1 + \lambda s(x_i) \right] = \lambda + 1 > 0, s(x_i) = g_\lambda(\{x_i\}) \quad (2.6) \]

where, the real number \(\lambda \), is also called the determinate coefficient of \(\lambda \)-measure.

Note that once the fuzzy density function is known, we can obtain the value of \(\lambda \) uniquely by using the previous polynomial equation. In other words, \(\lambda \)-measure has a unique solution without closed form, and is a univalent fuzzy measure, and if \(\sum_{x \in X} s(x) = 1 \) then \(\lambda \)-measure is just the additive measure.

2-2-4 P-measure

Definition 2.4

For each given fuzzy density function, \(s(x), x \in X \), on a finite set \(X \), a P-measure \(g_P \), is a fuzzy measure on set \(X \), satisfying (Zadeh, 1978):

1. \(g_P(\emptyset) = 0, g_P(X) = 1 \quad (2.7) \)
2. \(\forall A \subseteq X \Rightarrow g_P(A) = \max_{x \in A} s(x) = \max_{x \in A} g_P(\{x\}) \quad (2.8) \)

Note that P-measure is also a univalent fuzzy measure with only one fuzzy measure solution.

2-3 Multivalent Fuzzy Measures

2-3-1 Definition of multivalent fuzzy measure

Definition 2.5 A fuzzy measure is called a multivalent measure, if it has more than one fuzzy measure solution (Zadeh, 1978; Choquet, 1953).

2-3-2 Comparison between two measures

Definition 2.6 \(\mu_1 \) -measure \(\leq \mu_2 \) -measure
For any given fuzzy density function \(s(x) \) on a finite set \(X \), if \(\mu_1 \) and \(\mu_2 \) are two fuzzy measures, satisfying \(g_{\mu_1}(A) \leq g_{\mu_2}(A) \), \(\forall A \subseteq X \), then we say that \(\mu_1 \)-measure is not larger than \(\mu_2 \)-measure, or \(\mu_2 \)-measure is not smaller than \(\mu_1 \)-measure (Zadeh, 1978; Choquet, 1953), denoted as
\[
\mu_1 \text{-measure} \leq \mu_2 \text{-measure}.
\] (2.9)

Theorem 2.1 For any given fuzzy density function \(s(x) \) on a finite set \(X \), \(P \)-measure is not larger than any other fuzzy measure \(\mu \), that is\[
P \text{-measure} \leq \mu \text{-measure}
\] (2.10)

2-4 \(\delta \)-measure

Since \(L \)-measure does not include the additive measure, an improved multivalent fuzzy measure, called \(\delta \)-measure, was proposed by Liu’s previous work as following definition.

Definition 2.7 \(\delta \)-measure

For given singleton measures \(s(x) \), a \(\delta \)-measure is a multivalent fuzzy measure with determine coefficient \(\delta \in [-1,1] \) on a finite set \(X \), \(|X|=n \), satisfying (Liu, Wu, Jheng, & Sheu, 2009; Liu, Chen, Wu, & Sheu, 2009):

1. \[
\sum_{x \in X} s(x) = 1
\] (2.11)

2. \[
g_\delta(\emptyset) = 0, g_\delta (X) = 1, g_\delta (\{x\}) = s(x), \ \forall x \in X
\] (2.12)

3. \[
\forall A \subseteq X, 1 < |A| < |X| \Rightarrow g_\delta (A) = \begin{cases} \frac{\max_{x \in A} s(x)}{1 + \delta \max_{x \in A} s(x)} & \text{if } \delta = -1 \\ \frac{[1 + \delta \max_{x \in A} s(x)](1 + \delta \sum_{x \in A} s(x)) - \delta \max_{x \in A} s(x)}{1 + \delta \sum_{x \in A} s(x)} & \text{if } \delta \in (-1,1] \end{cases}
\] (2.13)
Theorem 2.2
For given singleton measure s,
If $A \subseteq B \subseteq X$ then
\[
\sum_{x \in B} s(x) - \sum_{x \in A} s(x) \geq \max_{x \in B} \{s(x)\} - \max_{x \in A} \{s(x)\} \geq 0
\] (2.14)

Theorem 2.3
For given singleton measure s, $\forall \delta \in [-1,1]$, δ-measure is a fuzzy measure.

Theorem 2.4 Important properties of δ-measure
(1) δ-measure is an increasing and continuous function of L on $[−1,1]$.
(2) $\forall \delta \in [-1,1]$, δ-measure is a fuzzy measure, in other words, δ-measure is a multivalent fuzzy measure with infinite many solutions.
(3) if $\delta = -1$ then δ-measure is just the P-measure,
(4) if $\delta = 0$ then δ-measure is just the additive measure,
(5) if $-1 \leq \delta < 0$ then δ-measure is a sub-additive fuzzy measure,
(6) if $0 < \delta \leq 1$ then δ-measure is a supper-additive fuzzy measure,

Theorem 2.5
If $\sum_{x \in X} s(x) = 1$ and $\delta = 0$ then δ-measure is just the λ-measure

Theorem 2.6
P-measure, additive measure and λ-measure are the special cases of δ-measure
2-5 Composed Measure of L-method and Delta-measure

2-5-1 L-measure

Definition 2.8 L-measure

For each given fuzzy density function s, a L-measure g_L, is a fuzzy measure on a finite set X, satisfying:

\begin{align}
(1) \quad g_L(\emptyset) &= 0, \quad g_L(X) = 1 \\
(2) \quad L \in [0, \infty), \quad \forall A \subseteq X, \quad A \neq X
\end{align}

\[\forall A \subseteq X, |X| - |A| + (|A| - 1)L > 0 \Rightarrow\]

\[g_L(A) = \max_{x \in A} [s(x)] + \frac{(|A| - 1)L \sum_{x \in A} s(x) \left[1 - \max_{x \in A} [s(x)]\right]}{|X| - |A| + (|A| - 1)L \sum_{x \in X} s(x)} \]

(2.17)

where the real number L is also called the determinate coefficient of L-measure.

Theorem 2.7 Important properties of L-measure

(1) L-measure is an increasing and continuous function of L on $[0, \infty)$.

(2) $\forall L \in [0, \infty)$, L-measure is a fuzzy measure.

(3) if $L=0$ then L-measure is just the P-measure.

(4) L-measure has infinite many solutions with closed form and is a multivalent fuzzy measure.

2-5-2 Definition of Generalized L-measure

Definition 2.9 Generalized L-measure

For given singleton measure $s(x)$, a generalized L-measure based on a fuzzy measure, μ, L_μ, is a fuzzy measure on a finite set X, $|X| = n$, satisfying:

\begin{align}
(1) \quad L \in [0, \infty)
\end{align}

(2.18)
(2) \(\forall A \subset X, n - |A| + (|A| - 1)L > 0 \Rightarrow \)

\[
g_{L,\rho}(A) = \max_{x \in A} \left[s(x) \right] + \frac{(|A| - 1)L\mu(A) \left[1 - \max_{x \in A} \left[s(x) \right] \right]}{n - |A| + (|A| - 1)L}\mu(X)
\]

(2.19)

Where the real number, \(L \), is also called the determine coefficient of \(L_{\mu} \)-measure.

Theorem 2.8

1. For each \(L \in [0, \infty) \), \(L_{\mu} \)-measure is a fuzzy measure, In other words, \(L_{\mu} \)-measure has infinite many fuzzy measures with determine coefficient \(L \), \(L \in [0, \infty) \).
2. \(L \in [0, \infty) \), \(L_{\mu} \)-measure is an increasing function on \(L \),
3. If \(L = 0 \) then \(L_{\mu} \)-measure is just the \(\mu \)-measure.
4. If \(\mu \)-measure is the \(P \)-measure then \(L_{\mu} \)-measure is the \(L \)-measure.
5. For each \(L \in [0, \infty) \),

\(P \)-measure \(\leq \) \(L \)-measure \(\leq \) \(L_{\mu} \)-measure.

Though \(\delta \)-measure includes the additive measure, but it has multiple measure solutions as \(L \)-measure, therefore, an improved multivalent fuzzy measure, the composed fuzzy measure of \(L \)-measure and \(\delta \)-measure, denoted \(L_{\delta} \)-measure was proposed by our previous work as follows (Liu, Chen, Wu, & Sheu, 2009).

Definition 2.10 \(L_{\delta} \)-measure

For given singleton measure \(s(x) \), the composed measure of \(L \)-measure and \(\delta \)-measure, denoted \(L_{\delta} \)-measure as \(g_{L,\delta} \), is a multivalent fuzzy measure with determine coefficient \(L \in [-1, \infty) \) on a finite set \(X \), satisfying (Zadeh, 1978; Choquet, 1953):
(1) \(\sum_{x \in X} s(x) = 1 \)

(2) \(g_s(\phi) = 0, g_s(X) = 1, g_s(\{x\}) = s(x), \forall x \in X \)

(3) \(\forall A \subset X, 1 < |A| < |X| \Rightarrow \)

\[
g_{\omega L}(A) = \begin{cases}
\max_{x \in d} s(x) & \text{if } L = -1 \\
\frac{1 + L \max_{x \in d} s(x)}{1 + L \sum_{x \in d} s(x)} - L \max_{x \in d} s(x) & \text{if } L \in (-1,0) \\
\sum_{x \in d} s(x) + \frac{|\delta| - 1}{\sum_{x \in d} s(x)} \left[1 - \sum_{x \in d} s(x)\right] & \text{if } L \in [0, \infty) \\
\end{cases}
\]

Theorem 2.9 Important Properties of \(L_\delta \)-measure

(1) \(\forall L \in [-1, \infty), \) \(L_\delta \)-measure is a fuzzy measure, in other words, \(L_\delta \)-measure is a multivalent fuzzy measure with infinite solutions.

(2) \(L_\delta \)-measure is an increasing and continuous function of \(L \) on \([-1, \infty)\).

(3) if \(L = -1 \) then \(L_\delta \)-measure is just the P-measure.

(4) if \(L = 0 \) then \(L_\delta \)-measure is just the additive measure.

(5) if \(-1 \leq L < 0 \) then \(L_\delta \)-measure is a sub-additive fuzzy measure.

(6) if \(0 < L < \infty \) then \(L_\delta \)-measure is a supper-additive fuzzy measure.

(7) If \(\sum_{x \in X} s(x) = 1 \) and \(L = 0 \) then \(L_\delta \)-measure is just the \(\lambda \)-measure.

(8) \(P \)-measure, additive measure and \(\lambda \)-measure are the special cases of \(L_\delta \)-measure.
2-6 Choquet Integral Regression Models

2-6-1 Choquet Integral

Definition 2.11 Choquet Integral

Let μ be a fuzzy measure on a finite set X. The Choquet integral of $f_i : X \rightarrow R_i$ with respect to μ for individual i is denoted by

$$\int_{c} f_i d\mu = \sum_{j=1}^{n} f_i(x_{(i)}) \cdot \mu(A_{(i)}) , i = 1,2,\cdots,N$$

(2.23)

where $f_i(x_{(0)}) = 0$, $f_i(x_{(j)})$ indicates that the indices have been permuted so that

$$0 \leq f_i(x_{(1)}) \leq f_i(x_{(2)}) \leq \cdots \leq f_i(x_{(n)})$$

(2.24)

$$A_{(j)} = \{x_{(j)},x_{(j-1)},\cdots,x_{(n)}\}$$

(2.25)

2-6-2 Choquet Integral Regression Models

Definition 2.12 Choquet Integral Regression Models

Let y_1,y_2,\cdots,y_N be global evaluations of N objects and $f_1(x_j),f_2(x_j),\cdots,f_N(x_j)$, $j = 1,2,\cdots,n$, be their evaluations of x_j, where $f_i : X \rightarrow R_i$, $i = 1,2,\cdots,N$.

Let μ be a fuzzy measure, $\alpha,\beta \in R$,

$$y_i = \alpha + \beta \int_{c} f_i dg_{\mu} + e_i , e_i \sim N(0,\sigma^2) , i = 1,2,\cdots,N$$

(2.26)

$$\left(\hat{\alpha},\hat{\beta}\right) = \arg\min_{\alpha,\beta} \left[\sum_{i=1}^{N} \left(y_i - \alpha - \beta \int_{c} f_i dg_{\mu} \right)^2 \right]$$

(2.27)

then $\hat{y}_i = \hat{\alpha} + \hat{\beta} \int_{c} f_i dg_{\mu}$, $i = 1,2,\cdots,N$ is called the Choquet integral regression equation of μ (Liu, 2009; Liu, Chen, Jheng, & Chien, 2009; Liu, Chen, Wu, & Sheu, 2009; Liu, Tu, Chen, & Weng, 2008; Liu, Wu, Jheng, & Sheu, 2009), where

$$\hat{\beta} = \frac{S_{yf}}{S_{ff}}$$

(2.28)
\[\hat{\alpha} = \frac{1}{N} \sum_{i=1}^{N} y_i - \frac{1}{N} \sum_{j=1}^{N} \left[f_i d_{g_{\mu}} \right] \]

\[S_{yf} = \frac{\frac{1}{N} \sum_{i=1}^{N} y_i - \frac{1}{N} \sum_{j=1}^{N} y_i \left[\int f_i d_{g_{\mu}} - \frac{1}{N} \sum_{k=1}^{N} \int f_k d_{g_{\mu}} \right]}{N-1} \]

\[S_{yf} = \frac{\frac{1}{N} \sum_{i=1}^{N} \left[\int f_i d_{g_{\mu}} - \frac{1}{N} \sum_{k=1}^{N} \int f_k d_{g_{\mu}} \right]^2}{N-1} \]

2-7 Fuzzy Density Function

Definition 2.13 For given singleton measure \(s \) of a fuzzy measure \(\mu \) on a finite set \(X \), if \(\sum_{x \in X} d(x) = 1 \), then \(s \) is called a density function of \(\mu \).

Definition 2.14 \(\gamma \)-density function

Let \(\mu \) be a fuzzy measure on a finite set \(X = \{x_1, x_2, ..., x_n\} \), \(y_i \) be global response of subject \(i \) and \(f_i(x_j) \) be the evaluation of subject \(i \) for singleton \(x_j \), satisfying:

\[0 < f_i(x_j) < 1, \quad i = 1, 2, ..., N, \quad j = 1, 2, ..., n \]

\[\gamma(x_j) = \frac{1 + r(f(x_j))}{\sum_{k=1}^{N} [1 + r(f(x_k))]}, \quad j = 1, 2, ..., n \]

Where

\[r(f(x_j)) = \frac{S_{y,y_j}}{S_y S_{y_j}} \]

\[S_{y_j}^2 = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \frac{1}{N} \sum_{j=1}^{N} y_i \right)^2 \]

\[S_{y_j}^2 = \frac{1}{N} \sum_{i=1}^{N} \left[f_i(x_j) - \frac{1}{N} \sum_{j=1}^{N} f_i(x_j) \right]^2 \]

\[S_{y,y_j} = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \frac{1}{N} \sum_{j=1}^{N} y_i \right) \left[f_i(x_j) - \frac{1}{N} \sum_{j=1}^{N} f_i(x_j) \right] \]
satisfying \(0 \leq \gamma(x_j) \leq 1 \) and \(\sum_{j=1}^{n} \gamma(x_j) = 1 \) \((2.37) \)

then the function \(\gamma : X \to [0,1] \) satisfying \(\mu(\{x\}) = \gamma(x), \ \forall x \in X \) is a fuzzy density function of \(\mu \), called \(\gamma \)-density function of \(\mu \).
3-1 Complete L-measure

For each given fuzzy density function, L-measure is a multivalent fuzzy measure with infinite many fuzzy measure solutions including the smallest fuzzy measure, P-measure, but it can not attain to the largest fuzzy measure, B-measure, and is not a completed fuzzy measure, B-measure, and is not a completed fuzzy measure. B-measure and completed L-measure was proposed by Liu (Liu, 2009; Liu, Wu, Chen, & Jheng, 2010), their formal definitions are described as follows.

3-1-1 B-measure

Definition 3.1 B-measure

For any given fuzzy density function $s(x)$ on a finite set X, a B-measure is a set function $g_B : 2^X \to [0,1]$, satisfying (Liu, 2009):

$$g_B(A) = \begin{cases} 0 & A = \emptyset \\ s(x) & A = \{x\}, x \in X \\ 1 & |A| > 1, A \subset X \end{cases}$$ (3.1)

Theorem 3.1 for any given fuzzy density function $s(x)$ on a finite set X, B-measure is not smaller than any fuzzy measure μ, that is

$$B \text{-measure} \geq \mu \text{-measure}$$.

In other words, for any given fuzzy density function $s(x)$ on a finite set X, B-measure is the largest fuzzy measure.

3-1-2 Completed L-measure

Completed fuzzy measure and Completed L-measure were also proposed by Hsiang-Chuan Liu in 2009 (Liu, 2009; Liu, Wu, Chen, & Jheng, 2010). Its formal definition is described as follows;
Definition 3.2 Completed measure

For any given fuzzy density function \(s(x) \) on a finite set \(X \), a multivalent fuzzy measure \(\mu \)-measure with determinate coefficient \(\mu \) is called a completed measure, if it satisfies following conditions (Liu, 2009; Liu, Wu, Chen, & Jheng, 2010):

1. If \(\mu = 0 \) then \(\mu \)-measure is just the P-measure.
2. If the upper limit fuzzy measure of \(\mu \)-measure is just the B-measure.

Note that \(L \)-measure is not a completed measure, since

\[
\lim_{L \to \infty} g_L(A) \neq g_\infty(A)
\] \hspace{3cm} (3.2)

Definition 3.3 Completed \(L \)-measure, \(L_C \)-measure (Liu, 2009; Liu, Wu, Chen, & Jheng, 2010)

For any given fuzzy density function \(s(x) \) on a finite set \(X \), a Completed \(L \)-measure, \(L_C \)-measure, is a set function \(g_{L_C} : 2^X \to [0,1] \) satisfying:

1. \(g_{L_C}(\emptyset) = 0, \ g_{L_C}(X) = 1 \)
2. \(L \in [0,\infty), \forall A \subset X, A \neq X \)

\[
g_{L_C}(A) = \max_{x \in A} \{s(x)\} + \frac{(|A| - 1)L \sum_{x \in A} s(x) \left[1 - \max_{x \in A} \{s(x)\}\right]}{|X| - |A| \sum_{x \in X} s(x) + (|A| - 1)L \sum_{x \in A} s(x)}
\] \hspace{3cm} (3.3)

Theorem 3.2 The properties of \(L_C \)-measure (Liu, 2009; Liu, Wu, Chen, & Jheng, 2010)

1. \(L_C \)-measure is an increasing and continuous function of \(L \) on \([0,\infty) \).
2. \(\forall L \in [0,\infty), \ L_C \)-measure is a fuzzy measure.
3. if \(L = 0 \) then \(L_C \)-measure is the \(P \)-measure.
4. if \(L \to \infty \) then \(L_C \)-measure is the \(B \)-measure.
5. \(L_C \)-measure has infinite many solutions with closed form and is a multivalent
fuzzy measure.

(6) $L_{c \delta}$-measure is a completed fuzzy measure, satisfying

$$\lim_{L \to \infty} g_{Lc \delta}(A) = g_{\delta}(A)$$

3-2 Composed fuzzy measure of completed L-measure and δ-measure

3-2-1 Definition of the composed fuzzy measure of completed L-measure and δ-measure

Definition 3.4 $L_{c \delta}$-measure (Liu, 2009; Liu, Wu, Chen, & Jheng, 2010)

For given singleton measure $s(x)$, the composed measure of completed L-measure and δ-measure, denoted $L_{c \delta}$-measure, $g_{L_{c \delta}}$ is a multivalent fuzzy measure with determine coefficient $L \in [-1, \infty)$ on a finite set X, satisfying:

1. $\sum_{x \in X} s(x) = 1$ (3.4)
2. $g_{\delta}(\emptyset) = 0, g_{\delta}(X) = 1, g_{\delta}(\{x\}) = s(x), \forall x \in X$ (3.5)
3. $\forall A \subset X, 1 < |A| < |X| \Rightarrow$

$$g_{L_{c \delta}}(A) = \begin{cases} \max_{x \in A} s(x) & \text{if } L = -1 \\ \frac{1 + \max_{x \in A} s(x)}{1 + \sum_{x \in A} s(x)} - L \sum_{x \in A} s(x) & \text{if } L \in (-1, 0) \\ \sum_{x \in A} s(x) + \frac{(|A| - 1) \sum_{x \in A} s(x) - \sum_{x \in A} s(x)}{(|X| - |A|) \sum_{x \in A} s(x) + (|A| - 1) \sum_{x \in A} s(x)} & \text{if } L \in [0, \infty) \end{cases}$$ (3.6)

3-2-2 Important properties of $L_{c \delta}$-measure (Liu, 2009; Liu, Wu, Chen, & Jheng, 2010)
Theorem 3.3 Important properties of $L_{C\delta}$-measure

(1) $L_{C\delta}$-measure is an increasing and continuous function of L on $[-1, \infty)$

(2) $\forall L \in [-1, \infty)$, $L_{C\delta}$-measure is a fuzzy measure, in other words, $L_{C\delta}$-measure is a multivalent fuzzy measure with infinite many solutions.

(3) if $L = -1$ then $L_{C\delta}$-measure is just the P-measure,

(4) if $L = 0$ then $L_{C\delta}$-measure is just the additive measure,

(5) if $L = 0$ and $\sum_{x \in X} s(x) = 1$ then $L_{C\delta}$-measure is just the λ-measure,

(6) if $-1 \leq L < 0$ then $L_{C\delta}$-measure is a sub-additive fuzzy measure,

(7) if $0 < L < \infty$ then $L_{C\delta}$-measure is a super-additive fuzzy measure,

(8) $L_{C\delta}$-measure is a completed fuzzy measure, satisfying

$$\forall A \subset X, |A| > 1 \Rightarrow \lim_{L \to \infty} L_{C\delta}(A) = L_\delta(A). \quad (3.7)$$

Proof.

(1) if $L \in [-1, 0)$, then $L_{C\delta}$-measure is a special case of δ-measure, since δ-measure is a fuzzy measure, then $L_{C\delta}$-measure is also a fuzzy measure.

if $L \in [0, \infty)$, then $L_{C\delta}$-measure is a special case of generalized L-measure based on the additive measure, since any generalized L-measure is also a fuzzy measure, then $L_{C\delta}$-measure is also a fuzzy measure.

Therefore, for each $L \in [-1, \infty)$, $L_{C\delta}$-measure is a fuzzy measure.

(2) if $L \in [-1, 0)$, then $L_{C\delta}$-measure is a special case of δ-measure, since δ-measure is an increasing function with upper bound, additive measure, then $L_{C\delta}$-measure is also an increasing function with upper bound, additive measure.

if $L \in [0, \infty)$, then $L_{C\delta}$-measure is a special case of generalized L-measure based on the additive measure, since generalized L-measure based on the additive measure is also an increasing function with lower bound, additive measure, then $L_{C\delta}$-measure is also an increasing function with lower bound,
additive measure.
Therefore, for each $L \in [-1, \infty)$, L_{c0}-measure is also an increasing function on L. (3), (4), (5), (6), (7) and (8) are trivial.
CHAPTER IV THE EXPERIMENT AND RESULTS

This chapter first presents an analysis and interpretation of the data used in this study. Then an analysis and comparison of the data related to the many fuzzy measures is presented.

4-1 Data of the Basic Competence Test

The total scores of 60 students from a junior high school in Taiwan are used for this research (Liu, Chen, Wu, & Sheu, 2009; Liu, Wu, Jheng, & Sheu, 2009). The examinations of four courses, physics and chemistry, biology, geoscience and mathematics, are used as independent variables, the score of the Basic Competence Test of junior high school is used as a dependent variable.

The data of all variables listed in Table II which was applied to evaluate the performances of seven Choquet integral regression models with P-measure, λ-measure, δ-measure, L-measure, L_δ-measure, L_C-measure, and $L_{C\delta}$-measure based on γ-density function respectively, a ridge regression model, and a multiple linear regression model by using 5-fold cross validation method to compute the mean square error (MSE) of the dependent variable. The formula of MSE is

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \quad (4.1)$$

The same singleton measure set, γ-density function, of the aforementioned fuzzy measures is listed as follows which can be obtained by using the formula (2.32).

\{0.2229, 0.2848, 0.2567, 0.2356\} \quad (4.2)

4-2 Experimental Results

For any fuzzy measure, μ-measure, once the fuzzy density function of the μ-measure is given, all event measures of μ can be found, and then, the Choquet
integral based on μ and the Choquet integral regression equation based on μ can also be found by using above corresponding formulae.

TABLE I. MSE OF REGRESSION MODELS

<table>
<thead>
<tr>
<th>Regression model</th>
<th>5-fold CV MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>measures</td>
<td></td>
</tr>
<tr>
<td>L_{cs}</td>
<td>47.4688</td>
</tr>
<tr>
<td>L_c</td>
<td>47.5772</td>
</tr>
<tr>
<td>L_s</td>
<td>47.9742</td>
</tr>
<tr>
<td>Choquet Integral Regression model</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>48.4610</td>
</tr>
<tr>
<td>δ</td>
<td>48.7672</td>
</tr>
<tr>
<td>λ</td>
<td>49.1832</td>
</tr>
<tr>
<td>p</td>
<td>53.9582</td>
</tr>
<tr>
<td>Ridge regression</td>
<td>59.1329</td>
</tr>
<tr>
<td>Multiple linear regression</td>
<td>65.0664</td>
</tr>
</tbody>
</table>

The experimental results of nine forecasting models are listed in Table I. It shows that the Choquet integral regression model with L_{cs}-measure based on γ-density function outperforms other forecasting regression models.
CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

This research sought to find out the effect of $L_{C\delta}$-measure.

5-1 Conclusions

The following conclusions were drawn from this study:

1. A multivalent composed fuzzy measure of completed L-measure and δ-measure, denoted $L_{C\delta}$-measure, is proposed. This new measure is proved that it is of closed form with infinitely many solutions, and it can be considered as an extension of the three well known measures: additive measure, λ-measure, and P-measure, respectively.

2. This improved multivalent fuzzy measure is a continuous and increasing function of L on $[-1, \infty)$. It not only includes the smallest fuzzy measure, P-measure, but also attains to the largest fuzzy measure. It is a completed multivalent fuzzy measure and has more range of infinitely many fuzzy measure solutions than which of L_{δ}-measure.

3. By using 5-fold cross-validation MSE, a real data experiment is conducted for comparing the performances of a multiple linear regression model, a ridge regression model, and the Choquet integral regression model with respect to P-measure, λ-measure, δ-measure, L-measure, L_{δ}-measure and the new fuzzy measure, $L_{C\delta}$-measure based on γ-density function respectively. The result shows that the Choquet integral regression models with respect to the proposed $L_{C\delta}$-measure based on γ-density function outperforms other forecasting models.

5-2 Suggestion

The recommendations which are put forth in this section have been drawn from
experience in this study and from an analysis of its results.

1. From this study, the result shows that the Choquet integral regression models with respect to the proposed $L_{C;\delta}$ -measure based on γ-density function outperforms other forecasting models. It strongly recommends applying the $L_{C;\delta}$ -measure in decision making, commercial, credit risk modeling, banking industry and educations.

2. It recommends to use simulation to validate the Choquet integral regression models with respect to the proposed $L_{C;\delta}$ -measure based on γ-density function outperforms other forecasting models.

3. For further study, researchers might consider to generalize the $L_{C;\delta}$ -measure to signed measure as their research interests.
REFERENCES

Appendix

Appendix A: Table II

<table>
<thead>
<tr>
<th>No.</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>BCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>66</td>
<td>78</td>
<td>72</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>86</td>
<td>80</td>
<td>82</td>
<td>81</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>63</td>
<td>69</td>
<td>75</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>72</td>
<td>80</td>
<td>76</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>68</td>
<td>74</td>
<td>77</td>
<td>80</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>74</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>56</td>
<td>62</td>
<td>68</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>71</td>
<td>74</td>
<td>80</td>
<td>77</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>68</td>
<td>70</td>
<td>80</td>
<td>75</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>53</td>
<td>56</td>
<td>70</td>
<td>63</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>67</td>
<td>70</td>
<td>80</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>13</td>
<td>70</td>
<td>66</td>
<td>70</td>
<td>74</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>60</td>
<td>65</td>
<td>75</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>68</td>
<td>68</td>
<td>78</td>
<td>76</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>58</td>
<td>66</td>
<td>76</td>
<td>71</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>61</td>
<td>66</td>
<td>72</td>
<td>78</td>
<td>33</td>
</tr>
<tr>
<td>18</td>
<td>68</td>
<td>68</td>
<td>80</td>
<td>74</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>56</td>
<td>66</td>
<td>76</td>
<td>71</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>62</td>
<td>70</td>
<td>78</td>
<td>29</td>
</tr>
<tr>
<td>21</td>
<td>62</td>
<td>64</td>
<td>76</td>
<td>70</td>
<td>36</td>
</tr>
<tr>
<td>22</td>
<td>71</td>
<td>72</td>
<td>78</td>
<td>75</td>
<td>26</td>
</tr>
<tr>
<td>23</td>
<td>74</td>
<td>63</td>
<td>69</td>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td>24</td>
<td>59</td>
<td>70</td>
<td>80</td>
<td>76</td>
<td>37</td>
</tr>
<tr>
<td>25</td>
<td>75</td>
<td>75</td>
<td>85</td>
<td>80</td>
<td>39</td>
</tr>
<tr>
<td>26</td>
<td>73</td>
<td>78</td>
<td>84</td>
<td>81</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>62</td>
<td>68</td>
<td>72</td>
<td>74</td>
<td>29</td>
</tr>
<tr>
<td>28</td>
<td>77</td>
<td>74</td>
<td>80</td>
<td>76</td>
<td>42</td>
</tr>
<tr>
<td>29</td>
<td>63</td>
<td>60</td>
<td>68</td>
<td>69</td>
<td>17</td>
</tr>
<tr>
<td>30</td>
<td>56</td>
<td>61</td>
<td>75</td>
<td>68</td>
<td>22</td>
</tr>
<tr>
<td>31</td>
<td>66</td>
<td>68</td>
<td>75</td>
<td>74</td>
<td>25</td>
</tr>
<tr>
<td>32</td>
<td>68</td>
<td>70</td>
<td>74</td>
<td>76</td>
<td>40</td>
</tr>
<tr>
<td>33</td>
<td>57</td>
<td>65</td>
<td>75</td>
<td>70</td>
<td>24</td>
</tr>
<tr>
<td>34</td>
<td>74</td>
<td>70</td>
<td>80</td>
<td>75</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>49</td>
<td>60</td>
<td>69</td>
<td>64</td>
<td>13</td>
</tr>
<tr>
<td>36</td>
<td>51</td>
<td>60</td>
<td>63</td>
<td>64</td>
<td>18</td>
</tr>
<tr>
<td>37</td>
<td>58</td>
<td>64</td>
<td>68</td>
<td>66</td>
<td>32</td>
</tr>
<tr>
<td>No.</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
<td>BCT</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>38</td>
<td>73</td>
<td>78</td>
<td>84</td>
<td>81</td>
<td>39</td>
</tr>
<tr>
<td>39</td>
<td>56</td>
<td>56</td>
<td>65</td>
<td>61</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>61</td>
<td>62</td>
<td>70</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>41</td>
<td>57</td>
<td>60</td>
<td>68</td>
<td>64</td>
<td>23</td>
</tr>
<tr>
<td>42</td>
<td>57</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>26</td>
</tr>
<tr>
<td>43</td>
<td>50</td>
<td>52</td>
<td>68</td>
<td>60</td>
<td>7</td>
</tr>
<tr>
<td>44</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>49</td>
</tr>
<tr>
<td>45</td>
<td>62</td>
<td>66</td>
<td>76</td>
<td>71</td>
<td>22</td>
</tr>
<tr>
<td>46</td>
<td>70</td>
<td>74</td>
<td>78</td>
<td>82</td>
<td>32</td>
</tr>
<tr>
<td>47</td>
<td>69</td>
<td>70</td>
<td>80</td>
<td>75</td>
<td>26</td>
</tr>
<tr>
<td>48</td>
<td>63</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>42</td>
</tr>
<tr>
<td>49</td>
<td>66</td>
<td>78</td>
<td>80</td>
<td>82</td>
<td>39</td>
</tr>
<tr>
<td>50</td>
<td>67</td>
<td>70</td>
<td>80</td>
<td>75</td>
<td>31</td>
</tr>
<tr>
<td>51</td>
<td>56</td>
<td>65</td>
<td>75</td>
<td>70</td>
<td>23</td>
</tr>
<tr>
<td>52</td>
<td>50</td>
<td>54</td>
<td>66</td>
<td>60</td>
<td>18</td>
</tr>
<tr>
<td>53</td>
<td>71</td>
<td>75</td>
<td>85</td>
<td>80</td>
<td>41</td>
</tr>
<tr>
<td>54</td>
<td>74</td>
<td>77</td>
<td>80</td>
<td>85</td>
<td>26</td>
</tr>
<tr>
<td>55</td>
<td>71</td>
<td>72</td>
<td>76</td>
<td>80</td>
<td>31</td>
</tr>
<tr>
<td>56</td>
<td>60</td>
<td>65</td>
<td>75</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>57</td>
<td>59</td>
<td>57</td>
<td>70</td>
<td>68</td>
<td>17</td>
</tr>
<tr>
<td>58</td>
<td>50</td>
<td>56</td>
<td>65</td>
<td>68</td>
<td>13</td>
</tr>
<tr>
<td>59</td>
<td>72</td>
<td>76</td>
<td>80</td>
<td>78</td>
<td>38</td>
</tr>
<tr>
<td>60</td>
<td>81</td>
<td>76</td>
<td>78</td>
<td>80</td>
<td>33</td>
</tr>
</tbody>
</table>

C1 : physics and chemistry
C2 : biology
C3 : geoscience
C4 : mathematics
BCT : Basic Competence Test of nature science
Appendix B: Published Paper I

Appendix C: Published Paper II

Appendix D: Published Paper III

VITA

NAME: Der-bang Wu

BIRTHDATE: July, 1958

BIRTHPLACE: Yun-lin County, Taiwan, the Republic of China

EDUCATION:

Doctor of Philosophy, 2010
Graduate Institute of Educational Measurement and Statistics,
Taichung University
Taichung, Taiwan, 40306

Doctor of Philosophy, 1994
Department of Mathematics
University of Northern Colorado
Greeley, Colorado, U.S.A.

M.S., 1985
National Taiwan Normal University
Taipei, Taiwan, the Republic of China

B.S., 1983
National Taiwan Normal University
Taipei, Taiwan, the Republic of China

1979
Taichung Junior Teachers College
Taichung, Taiwan, the Republic of China

EXPERIENCE:

1994-present Associate Professor,
National Taichung University

1988-1994 Instructor,
National Taichung Teachers College, Taiwan

1985-1988 Teaching Assistant
National Taichung Teachers College, Taiwan

1979-1983 Teacher
Chu-lin Elementary School, Taipei, Taiwan

PUBLISHING (Under 5 years)
A. Journal Papers

http://www.oldcitypublishing.com/MVLSC/MVLSC.html

B. Conference Papers

Wu, D. B. & Ma, H. L. (2010). An application of GM(0,n) to analyze the ma-wu’s test of Practical reasoning abilities. *Proceedings of the Sixth IASTED International Conference Advances in Computer Science and Engineering (ACSE 2010)*

馬秀蘭、蔡淑芬、**吳德邦**、吳惠娟 (2009)：以電腦 Logo 程式融入低成就學生數學補 救教學的個案研究—小璇的四邊形概念。第一屆科技與數學教育學術研討會論文集 (21-30)。台中市：國立台中教育大學數學教育學系。

吳德邦、沈紀伶、馬秀蘭、許天維 (2009)：台灣中部地區國中學生 van Hiele 幾何 思考層次分佈情形之調查研究。第一屆科技與數學教育學術研討會論文集 (58-67)。台中市：國立台中教育大學數學教育學系。
吳德邦、陳姿良、馬秀蘭、紀小玉(2009): 九年一貫課程實施中國小學童在幾何
圖形概念上之理解情形。第一屆科技與數學教育學術研討會論文集(68-77)。
台中市: 國立台中教育大學數學教育學系。(ISBN:978-957-442-713-0) (NSC
93-2521-S-142-010)

吳德邦、林雅玲、洪榮照、馬秀蘭、林怡秀(2009): 臺灣中部地區國小資源班教
師對數學課程與教學調整方式重要程度之研究。第一屆科技與數學教育學
術研討會論文集(571-580)。台中市: 國立台中教育大學數學教育學系。

吳德邦、李奇荃、馬秀蘭、李懿芳(2009): 臺灣中部地區國小四至六年級的學童
在 van Hiele 立體幾何思考次序理解情形與迷思概念之研究。第一屆科技與
數學教育學術研討會論文集(581-590)。台中市: 國立台中教育大學數學教育
學系。(ISBN:978-957-442-713-0) (NSC 94-2521-S-142-003-)

Wu, D. B., & Ma, H. L. (2009). Elementary school students’ developmental stages of
representations of regular cone. The Proceedings Hawaii International
Conference on Education, HICEdu2009. 2142-2151, [Hanoilulu, Hawaii, Jan. 3~5,
2009.] (ISSN:1541-5880) (NSC 93-2521-S-142-003)

Algorithms Based on Picard Iteration and Particle Swarm Optimization.
Proceedings of the International Symposium on Intelligent Information
Technology Application (IITA’2008), 838-842, [Shanghai, China, Dec. 21-22,
2008]. (EI 級論文).

on Complete Mahalanobis Distance and Separable Criterion. Proceedings of the
International Conference on Intelligent Systems Design and Applications

on Complete Mahalanobis Distances and Separable Criterion. In J. Ma, Y. Yin, J. Yu, &
S. Zhou (Eds.). The Proceeding of the 5th International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD2008), Vol. 1, 87-91, [Jinan,
Congress Number 2007927066 EI 級論文).

clustering algorithms based on complete Mahalanobis distances. Proceedings of
International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR
China]. (EI 級論文).

“Complete” Mahalanobis Distance. Proceedings of the International Conference on
Machine Learning and Cybernetics 2008, 3569-3574, [Kum-Ming, China, July

http://eproceedings.worldscinet.com/9789812709677/9789812709677_0200.html

吳德邦、馬秀蘭、紀小玉、林原宏、姚如芬(2006)：探討接受九年一貫數學課程國小學童幾何思考層次。論文發表於2006數學學術研討會。台北：國立台灣師範大學，民國95年12月8-10日。(NSC 92-2522-S-142-004)

馬秀蘭、吳惠娟、吳德邦(2006)：電腦程式Logo環境在四邊形補救教學成效。論文發表於2006數學學術研討會。台北：國立台灣師範大學，民國95年12月8-10日。(NSC 94-2614-S-275-001、NSC 94-2614-S-275-001)

International Conference in Mathematics, Sciences and Science Education.

(本文由國家科學委員會專題研究計畫，計畫編號：NSC 92-2521-S-142-004-。)

吳德邦、李穎芳、馬秀蘭（民95）。立體幾何思考層次測驗編製歷程之研究。載於吳德邦主編：數學考卷編製暨評析研討會論文暨會議實務彙編，(584-608)。台中市：國立台中教育大學數學教育學系。文章發表於「數學考卷編製暨評析研討會」，台北市台灣數學教育學會、國立台中師範學院主辦，民國95年02月07、08日（星期三、四）。NSC 94-2521-S-142-003-。

馬秀蘭、吳惠娟、吳德邦（民95）。一位國小五年級數學低成就學童在學習四邊形的成效—以Logo程式融入幾何補教教學為例。載於吳德邦主編：數學考卷編製暨評析研討會論文暨會議實務彙編，(642-664)。台中市：國立台中教育大學數學教育學系。文章發表於「數學考卷編製暨評析研討會」，台北市台灣數學教育學會、國立台中師範學院主辦，民國95年02月07、08日（星期三、四）。(NSC 93-2614-S-275-001、NSC 94-2614-S-275-001)

陳錡遠、吳德邦（民95）。2002至2005年大學入學考試學科能力測驗數學考科試題分析。載於吳德邦主編：數學考卷編製暨評析研討會論文暨會議實務彙編，(116-154)。台中市：國立台中教育大學數學教育學系。文章發表於「數學考卷編製暨評析研討會」，台北市台灣數學教育學會、國立台中師範學院主辦，民國95年02月07、08日（星期三、四）。

(本文由國家科學委員會專題研究計畫，計畫編號：NSC 92-2521-S-142-004-。)

(本文由國家科學委員會專題研究計畫，計畫編號：NSC 92-2521-S-142-004-。)

(本文由國家科學委員會專題研究計畫，計畫編號：NSC 92-2521-S-142-004-。)
C. Books

馬秀蘭、吳德邦譯 (民 99 印製中)。Writing literature reviews: A guide for students of the social and behavioral sciences (原著出版年：2006 年)。臺北市：心理出版社。

吳德邦（民 95）：國小學生在 Duval 的知覺性理解、操弄性理解、順序性理解、推論性理解和 van Hiele 理論關係之研究總結報告。台北市：許氏美術印刷股份有限公司，1-174。（本文由國家科學委員會專題研究計畫，計畫編號：NSC92-2521-S-142-004 所產生之部分成果。）